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Abstract

The line crack-like damage generated within a small material volume may change the material behavior of the
material volume from initially isotropic to effectively orthotropic, depending on damage orientation. Thus, the change
in material behavior can be used to identify the orientation of line crack-like damage with respect to the reference
coordinates. Motivated from this observation, first the equation of motion is derived for the thin uniform plate with line
crack-like local damages. The locations and severities of damages are characterized by using a damage distribution
function, and a damaged small material volume is represented by the effective orthotropic elastic stiffnesses, which are
derived in terms of damage orientation and size. Next, a new damage identification theory is developed to identify the
orientations of local damages, in addition to their locations and severities, by using the frequency response functions
measured from the damaged plate. Finally, the effects of damage orientation on the vibration responses of a plate are
numerically investigated, and the numerically simulated damage identification tests are conducted to verify the present
damage identification theory.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Existence of structural damages within a structure leads to the changes in dynamic characteristics of the
structure such as the vibration responses, natural frequencies, mode shapes, and the modal dampings.
Therefore, the changes in dynamic characteristics of a structure can be used in turn to detect, locate and
quantify the structural damages generated within the structure. In the literature, a variety of structural
damage identification methods (SDIMs), including the finite element model (FEM) update techniques and
the experimental-data-based methods, have appeared over the years.

The FEM update techniques (e.g., Kabe, 1985; Zimmermann and Kaouk, 1994; Lim, 1995) have a
drawback because it requires reducing the degrees of freedom or extending the measured modal parameters,
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which may result in the loss of physical interpretability and the errors due to the stiffness diffusion that
smears the damage-induced localized changes in stiffness matrix into the entire stiffness matrix. Thus,
various experimental-data-based SDIMs have been proposed in the literature as the alternatives to the
FEM-update techniques. The existing experimental-data-based SDIM can be classified into several groups
depending on the type of experimental data used to detect, locate, and/or quantify structural damages.
They include the changes in modal data (e.g., Adams et al., 1978; Luo and Hanagud, 1997; Bicanic and
Chen, 1997; Hassiotis, 2000), frequency response functions (FRF) (e.g., Wang et al., 1997; Thyagarajan
et al., 1998; Lee and Shin, 2002a,b), strain energy (e.g., Cornwell et al., 1999), transfer function parameters
(e.g., Lew, 1995), flexibility matrix (e.g., Pandey and Biswas, 1995), residual forces (e.g., Ricles and Kos-
matka, 1992; Castello et al., 2002), mechanical impedances (e.g., Cawley, 1984), and so forth. It is inte-
resting to find that most of experimental-data-based SDIMs in the literature have been derived from FEM
model-based eigenvalue problems and that they have been applied mostly to one-dimensional structures
such as beams, frame structures, and truss structures.

Though there have been many studies on the vibration of cracked plates (e.g., Lynn and Kumbasar,
1967; Lee and Lim, 1993; Dimarogonas, 1996; Lee and Kim, 2001), there have been only a small number of
studies on the identification of damages within the plates. In the literature, Cawley and Adams (1979) are
the first who locates the defects within a rectangular plate by using natural frequency changes only. Araujo
dos Santos et al. (2000) used both natural frequencies and vibration modes to detect the damages within a
laminated rectangular plate, and Chen and Bicanic (2000) introduced a method in which the incomplete
natural frequencies and vibration modes can be used to detect the damages within a cantilever plate. The
damage detection methods by Cawley and Adams (1979), Araujo dos Santos et al. (2000), and Chen and
Bicanic (2000) are all derived from FEM model-based eigenvalue problems. Khadem and Rezaee (2000)
introduced an analytical approach in which the changes in natural frequencies are used for obtaining the
location and depth of a crack on the in-plane loaded plate. Later, Lee et al. (2001) developed an SDIM in
which the FRF measured from a damaged plate is used for identifying the locations and severities of many
local damages at a time.

The failure of most structural members involves general degradation of elastic properties due to the
localized nucleation and growth of damages (i.e., voids, cavities, or cracks of the size of crystal grains) and
their ultimate coalescences into the larger and larger size of material fracture. This implies that the ori-
entation of local damages may control the direction of crack propagation within a structure member.
Because the damage orientation will play a very important role to determine the failure pattern and re-
maining life of a structure member, it is mandatory to develop an SDIM that is capable of identifying the
orientations of local damages, together with their locations and severities. However, to the authors’ best
knowledge, the main concerns of the previous experimental-data-based SDIMs existing in the literature are
mostly confined to locate and quantify local damages within a structure, without showing the capability to
identify the orientations of local damages. Motivated from this observation, this paper introduces a new
SDIM by which the orientations of local damages within a thin uniform plate, in addition to their locations
and severities, can be simultaneously identified.

The surfaces of material fracture can be considered as the continual propagation and coalescence of film-
like small local cracks. Thus, it may be pertinent to consider a local damage, which is film-like and uniform
through the plate thickness, as the equivalent line through-crack (simply, line crack). Based on the con-
tinuum damage mechanics, Lee et al. (1997) showed that a small material volume (SMV) with a line crack
behaves effectively orthotropic (i.e., orthotropic damage), while an SMV with a circular crack behaves
effectively isotropic (i.e., isotropic damage). They represented the material behavior of the SMV with a line
crack in terms of the effective orthotropic elastic stiffnesses, which are the functions of the isotropic elastic
stiffnesses, crack orientation, and the size of line crack (Lee et al., 1997). Thus, the changes in local elastic
stiffnesses from initially isotropic to effectively orthotropic can be considered as the indicator of current
crack orientation: this observation brings a new SDIM developed in the present study.
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Thus, the purposes of the present study are: (1) to derive the equation of motion for the thin uniform
rectangular plate with line crack-like damages by using a continuum damage representation, and (2)
to develop a new SDIM by which the orientations of local damages, in addition to their locations and
severities, can be identified at a time.

2. Effective orthotropic damage representation

Consider an elastic thin rectangular plate with the thickness 4 and the widths L, and L, in the x- and y-
directions, respectively. The intact plate material is isotropic and has Young’s modulus £ and Poisson’s
ratio v. Assume there is a line crack of length 2/, centered at (xp, yp) and aligned with the crack coordinate
‘1> which is oriented 6° with respect to the global coordinate x, as shown in Fig. 1(a). In the following, the
crack coordinates will be represented by the subscripts 1 and 2, if not mentioned otherwise.

Lee et al. (1997) showed that the effective elastic stiffnesses Qﬁ for the SMV containing a line crack-like
damage could be derived as follows:

Q;[j):Qlj(l _eij@) (l?]: 1,2,6;1’10 Sum) (1)
where Q;; are the reduced stiffnesses for the intact isotropic material under the plane stress state (Whitney,
1996) and e;; are the effective material directivity parameters given by

2v? 2
= e = e = e =
— 2 o2 2= =15 )
2
I+v

For the case of isotropic damage such as the circular through-crack (i.e., circular hole), the values of e;; are
given by

€11

elg=¢ex=¢eq =en =0, ex=

ep=ep=en=ey=¢ec=1, e=ex=-es=en=0 (3)
In Eq. (1), Z is the damage variable defined by the ratio of the volume of the SMV (i.e., 4xyh) containing a
single line crack inside and the effective damaged volume (i.e., mhl?) determined by the size of crack (Lee
et al., 1997). Thus, & represents the averaged severity of damage within an SMV, which is called herein the
effective damage magnitude. The effective damage magnitude 0 < 2 < 1 may have two extreme values as

g - mhl> {0 for intact state @)
~ 4xph | 1 for complete material failure
y y
A Lyﬂ
L
’ ISOTROPIC Q, (@) ISOTROPIC Q (b)
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Fig. 1. (a) Initially isotropic rectangular plate with a line through-crack and (b) its equivalent continuum damage representation in
terms of effective orthotropic elastic stiffnesses.
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Note that the effective orthotropic elastic stiffnesses Qg given by Eq. (1) are all measured with respect to
the crack coordinates 1 and 2. Thus, the effective elastic stiffness with respect to the global coordinates x and
y can be obtained by using the coordinates transformation as follows:

0= 1(0)' Q°T(0) (5)
where T(0) is the coordinates transformation matrix (Whitney, 1996), in which 0 denotes the crack orien-
tation (degrees) with respect to the global coordinate x. The superscript “T” denotes the transpose of matrix.

In the following, the SMV containing a line crack-like damage (simply, damage) will be represented in
terms of the effective elastic stiffnesses of Eq. (5) (Q.j) that are determined from the reduced stiffness of
intact isotropic solid (Q;;), the effective material directivity parameters (e;;), the damage orientation (0), and
the damage variable (2).

3. Dynamics of a plate with orthotropic damages
3.1. Equation of motion

For small amplitude vibration, the equation of motion for a thin uniform plate is given by (Whitney,
1996)
oM, 4o *M,, M,
Ox? oxdy 02
where w(x, y, ) is the flexural deflection, f(x,y, ) the external force applied normal to the surface of plate,
pA is the mass density per area, and dot (-) denotes the partial derivative with respect to time z. The moment
resultants M,, M,, and M,, are defined by

+f(x7ya t) = pAw (6)

M, Dy, ?12 ?16 Kxx
M, o= Dy Da | § K (7)
M,, symm Des Kyy

where «;; are the curvatures and D;; are the bending stiffnesses related to the transformed plane-stress re-
duced stiffnesses Q,; as follows (Whitney, 1996):

3
DUZEQU (17]: 17276) (8)

Because the plate shown in Fig. 1(b) consists of the intact zone (outside SMV, isotropic) and the
damaged zone (inside SMV, effectively orthotropic), D;; have the values as follows:

ij D

Dj; = Dii(?) (inside SMV) (i,j=1,2,6) o)

The intact plate bending stiffnesses D;; for the outside of SMV are given by
Dy =Dxp=D, Dyp=Dy=vD

1—v (10)
Dig = Dg1 = Dy = Dgy = 0, D66:< 3 )D
where D is the flexural rigidity of plate defined by
E 3
p= " (1)

12(1 —2)
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Based on Eq. (9), the bending stiffnesses all over the plate can be represented by

Dy(x,y) = Dy — ADyd(x,y) (i,j=1,2,6) (12)
where

AD; =Dy — D (i,j=1,2,6) (13)
and

d(x,y) = [H(xp —X) = H(xp +X)] x [H(yp —y) = H(yp + J)] (14)

The perturbed plate bending stiffnesses AD;; represent the effective degradation of the plate bending stiff-
nesses due to the existence of damage. The damage distribution function d(x, y) plays the roll of locating
and quantifying the severity of damage on the plate. In Eq. (14), H(x) and H(y) are the Heaviside’s unit
functions defined by

H(a) = {

Substituting Eq. (12) into Eq. (7) and the result into Eq. (6) yields the equation of motion for the plate
with a line crack as follows:

1 whenx>a (ory>a) (15)
0 whenx<a (ory>a)

Vi (a;ﬁl " aazﬁz " gﬁ;) + p A = f (1) (16)
where

sl S

S

¢y =d(x,y) :2AD16 aazv: +2ADs ZZVZV 4 4ADg 652; ]

where V# denotes the biharmonic operator. For the intact plate, the second term in the left-hand side of
Eq. (16) completely vanishes. Though Eq. (16) is derived for a single damage, it can be readily generalized
for many line cracks by modifying Eq. (14) to encompass all local damages.

3.2. Dynamic responses

The forced vibration response of a thin uniform plate with a single damage can be assumed as

W(xvya t) = ZVVM(xvy)CIm(I) (18)

where ¢,,(¢) are the modal coordinates, and W, (x,y) are the natural modes of intact plate satisfying the
eigenvalue problem

DV*W,, = pAQ.W,, (no sum on m) (19)
and the orthogonality property
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//DW,,,V“W,,dxdy = @26,, (no sum on m) (20)

where ,, are the natural frequencies of the intact plate, and J,,, denotes the Kronecker delta. The natural
modes W,,(x,y) used in Eq. (18) can be analytically obtained in the closed forms for Levy-type plates
(Reddy, 1999). However, for the non-Levy-type plates, the numerical approach such as the finite element
method can be applied to obtain the natural modes.

Substituting Eq. (18) into Eq. (16) and then applying Eq. (20) yields the modal equations as follows:

§ + diag[Q’)g — g = £ (1) (21)
where
g={a @ ... qu}', diag?]= Q, (22)

and f is the nodal forces vector computed from

Ly Ly
= [ [ rrom ey (23)
0 0
and the matrix 4 is computed from
yp+y Xp+X
= [ [ @ulxn) Ay drdy (24)
Yp=y Xp—X

where @,,, is the (one by six) matrix defined by
D (x,y) = o*wW,, O*W, O*W, O*W, O*W, O*W, o*w,, O*W, O*W, O*W,,
m V)T o o o 0y? oz 92’ Ox2 0x0y ox2 xdy /)’

O W, W, oW, O°W, n o'W, O*W,, oW, W, (25)
2 2’ 02 O0x0y 0y* xdy )’ Oxdy OxQy
and 4 is the (six by one) vector defined by
A = {ADy1,ADyy,ADg, ADy, AD5s, ADgs } (26)

The symmetric matrix 4 reflects the influence of damage and it is called ‘damage influence matrix’ (Lee and
Shin, 2002a). The off-diagonal terms of A induce the coupling between modal coordinates.
By using Egs. (5), (8)—(10), Eq. (13) can be expressed as

where Z; are computed from
h3
Z(0) =5 T(0)"ET(0) (28)
where T is the coordinates transformation matrix defined in Eq. (5), and E is the matrix computed from
Eij = Q[jeij (l,] = 1, 2, 6, no Sum) (29)

The values of e; are given by Eq. (2) for orthotropic damages and by Eq. (3) for isotropic damages.
Substituting Eq. (27) into Eq. (26) gives

A=D(P+H,+H)7 (30)
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where P, H., and H, are the vectors defined, for orthotropic damage, by

2 2 i T
p_ 1+v 2v 0 1+v 0 1—v
1—v 1-—y? 1 —v? 2(1+v)

: (31)
H.={-—cos20 0 0 cos20 0 0}
H,={0 0 —sin20 0 —sin20 0}"
and, for isotropic damage, by
P={1 01 0 (1-v)/2}"
{1 (1-v)/2} )
H.=H,=0
Substituting Eqgs. (14), (25) and (30) into Eq. (24) gives
A= (a+ Bcos20+ysin20)7 (33)
where a, B, and y are computed, for orthotropic damage, from
B D/yo+y /XD+x 1 + V2 62 VVm aZVVn N 2v asz 62Wn N a2an anVm
' o 1—v2) ox2 o2 1 -2 ox?  0y? ox2  0y?
1 2 2 1— 2 2
4 +1? amam+ v amamdxdy
1—v2) 02 02 2(1 +v) ) 0x0y 0xOy (34)

yp+Yy Xp+X 2 2 2 2
_p / (awa L W T, )dxd

o7 X2 Ox? 02 02

’ymn -

/D+y /¥D+x <62VVm aZVVn aZVVn aZVVm aZWm GZVV” aZVVn aZVVm

Ox? Ox0y Ox? Ox0py 02 6x6y+ 0y? 6x6y)dXdy

For the isotropic damage, Eq. (33) becomes identical to that derived in the previous study by Lee et al.
(2001): p =y =0 and « is computed from

/yD+y /xD+x 62 VVm 62 62 Wm 62 VVn 62 VV,, 62 Wm 62 Wm 62 VV;,
OC}?H’I - D + vV + +
. ox?  0x? ox?  0y? ox?  0y? 0y*  0y?

1 —v\ *W, O*W,
- “ |dxd 35
+< ) )Gxayaxay} Y (35)
Eq. (33) shows that the damage influence matrix 4 depends on (a) the natural modes of intact plate W,,, (b)
the damage orientation 0 and (c) the effective damage magnitude 2 indicating the averaged severity of
damage within an SMV.

Eq. (32) or (33) is derived for the plate with a single damage. For the plate with many local damages (say
N local damages), it can be readily generalized as follows:

N
= Z(aj + B;c0s 20, + y;sin 20,) 7, (36)
J=1

where &, is the effective damage magnitude within the SMV containing the jth damage of orientation 0.
The SMV containing the jth damage is centered at (xp;, yp;) and has the dimensions of 2X; and 2j; in the x-
and y-directions, respectively. The matrices a;, B, and y; are for the jth damage, all computed from Eq. (34)
or (35) by taking the integrals only over the domam from (xp; —X;) to (xp; +%;) and from (yp; —¥;) to

(yDj +yj)
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Assume a harmonic point force of magnitude F, is applied at a point xz = (xr,yr). Solving Eq. (21) for
gm(t) and then substituting the solutions into Eq. (18) gives the forced vibration response measured at
xy = (x,y) as follows:

M M
W ( m x W X iw
W(xM,t) = E [22—"' E E ) AZOZ Q2 ( F> F;)e ! (37)
1

M
m=1 m=1 n=

4. Damage identification theory
4.1. Formulation

It is relatively easy and cheap to use accelerometers to measure the vibration responses of a structure. The
vibration signals measured by accelerometers can be processed to compute the FRF. Among several defi-
nitions of FRF (Ewins, 1984), the inertance (or accelerance) FRF will be adopted in the present study to
develop a new damage identification method. The inertance FRF is defined as the ratio of the acceleration
to the applied force.

The inertance FRF measured from a damaged plate can be obtained from Eq. (37) as

AP (X, 0) = A (x4, 0) + At (X1, ) (38)
where .o/ is the inertance FRF measured from the intact plate:
oA (xy, ) = —*P}, diag[@* — | Pr (39)

and A/ is the perturbed inertance FRF due to the existence of damage

At (xy, 0) = —* V) AW (40)
where
W (.xM) W (xF) . B
M= Q2 —w? F= QZ —w? dlag[QZ — 0)2] = Qrzn — (,02 (41)

From Eq. (38), one may see that the effects of damage appear only in the perturbed inertance FRF (A.«7)
through the damage influence matrix 4 given by Eq. (36).
Substituting Eq. (36) into Eq. (40) gives

N

Z [a;(xy, ®) + b;(xpr, ) €08 20, + ¢;(xyr, ) $in 20, D; = At (xy, ) (42)
Jj=1
where
a;(xy, ) = =’ ¥}, (xy, ), ¥r (o)
b(xy, ) = =’ ¥}, (xy, ) B, ¥ () (43)

f(xM7 (}J) = 70‘)2 W}\;f (xM7 (,L))))]WF((}J)
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Eq. (42) shows the relationship between the damage information (i.e., effective damage magnitudes &; and
damage orientations 0,) and the damage-induced change in dynamic response (i.e., the perturbed inertance
FRF A.e7). Thus, once A/ is experimentally measured from the damaged plate, Eq. (42) can be used to
identify the unknown damage information.

For a chosen set of (x),®), Eq. (42) provides an algebraic equation for unknown effective damage
magnitudes &; and damage orientations 0;. Thus, by properly choosing as many different sets of (x,, ) as
required, say N for instance, and denoting the ith set of (x,,, w), by the subscript 7, a set of simultaneous
algebraic equations can be obtained in the form as

X(0)2 = Add (44)
where

D={D, Dy - Dy}

O={0, 0, - 0y} (45)

A = {Asty Asty - Ay}’

and

X(0) = A + Bdiag[cos 20] + Cdiag[sin 20]

diag[cos 20] = cos 20,

diag[sin 26] = sin 20,

Eqgs. (44) represent the damage identification theory developed in this paper for locating many local line
crack-like damages and also for identifying their severities (i.e., effective damage magnitudes) and orien-
tations with respect to the reference coordinates.

For the problems with isotropic damages, the matrices B and C should vanish and Egs. (44) are reduced
to the theory developed in the previous study (Lee et al., 2001), that is

AG = At (47)

For isotropic damage, the matrix A4 is computed from Eq. (43a) by using the matrix « defined by Eq. (35).
By properly choosing N different sets of (x), ), the number of simultaneous algebraic equations can be
made equal to that of SMVs (or the number of unknown ;). Then, one can apply the direct matrix in-
version method to solve Egs. (47) for &.
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4.2. Computation: iterative method

Eq. (44) is nonlinear with respect to the damage orientation @, which are coupled with effective
damage magnitude &. Thus, the iterative solution technique is inevitable for identifying orthotropic
damages.

Once Ao/ is given (i.e., measured), the relationship between the perturbations (or errors) in & and @ can
be derived from Eq. (44) as follows:

AZ = 2X1(0)Y(0)diag[Z,]]AO = SAO (48)
or

AO =S"'AD (49)
where

Y (©) = Bdiag[sin 20] — C diag[cos 20]

AO ={A0, AO, --- AOy}' 50

The matrix S in Eq. (48) indicates the sensitivity of & to the perturbation in @, while the matrix S~
in Eq. (49) indicates the sensitivity of @ to the perturbation in &. For numerical illustration, the matrices
S and S are given in Fig. 2 for the plate with a local damage shown in Fig. 6(a). It is very clear from Fig. 2
that & is not so sensitive to the perturbation in @, while @ is extremely sensitive to the perturbation in
%. Thus, when applying an iterative solution method to Egs. (44), it is not desirable to update @ by
directly using the perturbation in &. From this observation, an iterative method shown in Fig. 3 is used
in this study. The procedure of the present iterative solution method is further detailed in the following:

(1) First guess the initial value ©(1) and then compute the corresponding initial value Z(1) from Egs. (44)
by the direct use of matrix inversion.

(2) Substitute the initial value 2(1) into Egs. (44) and compute the updated value of @ by applying the
Newton—Raphson method to solve the nonlinear algebraic equations in @.

(3) Compute the increment A@ by subtracting the previous value of @ from the updated value of @ and
then use the results to compute the increment AZ from Eq. (48).

(4) Compute the updated value of & by adding AZ to its previous value.

(5) Go back to (2), and use the updated value of & as the new initial value to start the next iteration.

100

row(i]sn row (i) 50

50 50 2
column (j) column (j)

(a) Matrix [S]" (b) Matrix [S,]"

Fig. 2. (a) The matrix S in Eq. (48) and (b) its inverse matrix S~' in Eq. (49).
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j=1

¢ Guess initial values @ (1)
o Compute initial values ©(1)
D(1) = x(©(1)) A4 (Eq. 49)

<«
4

\

Newton-Raphson Method
Compute @ (j + 1) from
X(®(+1)D() = AA (Eq.49)

Y

Compute the increment A@
AD =0 (+1)-0()

v

Compute the increment AD
AD =S A6 (Eq.53)

v

Update @ .
DO(+1) = D()+ AD

Yes

j=j+1

Fig. 3. Iterative solution method used in the present study.

(6) Repeat the iteration process (from (2) to (5)) until & and @ are converged to certain values, within a
pre-specified accuracy limit.

5. Numerical illustrations and discussions

First, the effects of damage orientation on the vibration responses of a plate with a line crack are in-
vestigated. Fig. 4 shows the example plate, which is simply supported. The geometric and material pro-
perties are: thickness 4 = 0.004 m, sizes L, = L, = L = 0.5 m, Young’s modulus £ = 72 GPa, Poisson’s ratio
v = 0.33, and mass density 2800 kg/m?. The line crack is 0.032 m long and is located at the center of plate. A
point harmonic force (excitation frequency w = 100 Hz) is applied at the middle of the plate. To compute
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Square Plate with a Line Crack (a) r=0.05L
w 15

Measurement Point Direction ¢ ( degree )
< 4 4
Measurement Point Direction § ( degree )

o

@ 0 L o e o i "
Damage Orientation 0 ( degree ) Damage Orientation 0 ( degree )

(b)r=0.15L (cyr=0.2L

Measurement Paint Direction § ( degree )

(d)r=0.3L () r=0.45L

Fig. 4. Non-dimensional vibration amplitudes of a square plate measured at different distances from the line crack (r) with varying the
crack orientation () and the angle of measurement point direction ().

the effective elastic stiffnesses Qg for damage zone (i.e., SMV), the dimensions of the SMV are chosen as
2% = 2y = 0.04 m so that the effective damage magnitude becomes & = 0.5.

Comparing with the natural frequencies of the intact plate and the plate with isotropic damage, Table 1
shows the change in the natural frequencies of the plate with orthotropic damage with varying the orien-
tation of damage. One may see from Table 1 that, in general, the natural frequencies are reduced in
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Table 1
Damage information pre-specified for damage identification tests
Example problems Effective damage Damage orientation Damage location Dimensions of finite
magnitude (degrees) (xpm, ypm) segment (2xm, 2ym)
One damage 2=0.5 0 =45 (0.225, 0.225) (0.05, 0.05)
Three damages 2,=03 0,=0 (0.125, 0.375) (0.05, 0.05)
9,=0.7 0, =45 (0.275, 0.075) (0.05, 0.05)
95 =10.5 0; =30 (0.275, 0.275) (0.05, 0.05)

magnitude due to the presence of damage and they are dependent of damage direction. The geometric
symmetry of the example square plate will be destroyed by the orthotropic damage, while not by the
isotropic damage. Thus, as expected, Table 1 shows that the natural frequency for mode (1,2) is different
from that for mode (2,1) for the case of orthotropic damage, while they are the same for the case of
isotropic damage. Fig. 4 shows the vibration amplitudes of a square plate measured at different distances
from the crack (r) with varying the crack orientation (0) and the measurement point direction (¢). One
may observe that, as the distance of the measurement point from the crack gets larger and larger, the
effects of the measurement point direction disappear and only the effects of crack orientation become
dominant.

Next, the numerically simulated damage identification tests are conducted to validate the present SDIM.
Two example problems shown in Fig. 5 are considered: (a) the plate with a line crack-like damage (single
damage problem), and (b) the plate with three line crack-like damages (three damages problem). The two
plates have the simply supported boundary conditions, and they have the same dimensions and material
properties: thickness # =4 mm, L, = L, = 0.5 m, Young’s modulus E = 72 GPa, Poisson’s ratio v = 0.33,
and mass density 2800 kg/m®. The details of the line crack-like damages considered for two example
problems are given in Table 2. As shown in Fig. 5, the plates are divided into 100 equal-sized finite seg-
ments, and the damage identification analysis are conducted to determine the effective damage magnitudes
and orientations within all finite segments. A point harmonic force (excitation frequency w = 100 Hz) is
applied at the middle points of plates, and the inertance FRF is simulated from Eq. (38) at each center of
finite segments.

To measure the accuracy of the identified effective damage magnitudes with respect to true ones (i.e., pre-
specified values), a root mean squared ‘damage identification error (DIE)’ defined by

<

- ..... D3=0.7

03 = 45°

n

=0.7
= 45°

@ 0

0.5m ———
°0
nn
o e
° w
0.5m ———— ™

D2=0.5
l " l
- il -
l————— 0.5m ————» —— 0.5m ———»
(a) One Damage Problem (b) Three Damages Problem

Fig. 5. Two example problems considered for numerically simulated damage identification tests.
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Table 2
The change in natural frequencies (Hz) of the plate shown in Fig. 4
Modes Intact Isotropic Orthotropic damage
damage 0=0° 0=15° 0 = 30° 0 = 45°
Ist (1,1) 77.95 76.30 75.03 74.86 74.46 74.23
2nd (1,2) 194.87 194.23 192.91 192.75 192.40 192.20
3rd (2,1) 194.87 194.23 194.50 194.52 194.56 194.58
5th (1,3) 389.74 377.32 364.94 365.46 366.49 367.01
10th (1,4) 662.56 654.56 660.11 658.97 656.01 653.90
20th (4,4) 1247.16 1241.80 1239.18 1232.93 1219.88 1212.97
30th (3,6) 1753.82 1734.85 1742.71 1742.61 1742.40 1742.31
1 Nscg
— %.5.(DT 2
DIE = \ |77~ D _4%%(D] - D)) (51)
v =1

is used herein. The superscripts 7 and [/ indicate the ‘true’ and ‘identified’ values, respectively. Ny, is
the number of finite segments, and the subscript ; indicates the quantities for the jth finite segment.
As the value of DIE gets smaller, the identified effective damage magnitudes get closer to the true
values.

Figs. 6 and 7 show the damage identification results for the single damage problem and three damages
problem, respectively, all obtained without taking into account the measurement noise in FRF. One may
see from Figs. 6 and 7 that, as the iteration is repeated, the damage identification results obtained by the
present SDIM indeed converge to the true values. To obtain very accurate damage identification results,
within 0.5% errors for both the effective damage magnitudes and damage orientation, Figs. 6 and 7 show
that total 20 iterations and total 40 iterations are required for the present single damage problem and three
damages problem, respectively.

In practice, the experimentally measured inertance FRF is liable to be contaminated by the measurement
noise. The measurement noise may be lowered below about 5-7% by most well prepared vibration tests
(Lee and Shin, 2002b). To investigate the effects of measurement noise in FRF on the reliability of the
present SDIM, €% random noise is added to the simulated inertance FRF by following the approach by
Thyagarajan et al. (1998):

— e
Jzif,szi<1+100><randn> (52)
where .o/ is the inertance FRF contaminated by €% random noise, and randn is the random noise generator
function in MATLAB®.

The effects of the noise in FRF on the damage identification results are shown in Fig. 8 for the single
damage problem and in Fig. 9 for the three damages problem. The results shown in Figs. 8 and 9 are
obtained from the mean values of ten simulations. For each simulation, total 20 iterations are conducted
for the single damage problem, and total 40 iterations for the three damages problem. As expected, as the
level of random noise in FRF is increased, the larger level of incorrect effective damage magnitude appears
at damage-free finite segments, increasing the value of DIE. Figs. 8 and 9 show that the present SDIM
identifies the location and effective damage magnitude of the damaged finite segments quite accurately,
within about 5% errors, as far as the noise in FRF is kept below about 10% for one damage problem and
about 7% for three damages problem. In addition, Figs. 8 and 9 show that the present SDIM can fairly well
identify the damage orientation at damaged finite segments, which is the unique and important feature of
the present theory. From Figs. 8 and 9, one may observe that, when compared with the location and se-
verity of damage, the damage orientation is more sensitive to the random noise in FRF. To predict the
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Fig. 6. Damage identification results for the one damage problem, without considering the effects of measurement noise in FRF.

damage orientation within about 5% errors, Figs. 8 and 9 show that the noise in FRF should be below
about 7% for one damage problem and about 5% for three damages problem. Thus, in general, identifying
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Fig. 7. Damage identification results for the three damages problem, without considering the effects of measurement noise in FRF.

damage orientation seems to require more carefully prepared FRF-measurement tests in order to lower the
level of measurement noise below than that required for identifying damage location and magnitudes only.

6. Conclusions

In the present paper, first, the equation of motion of the thin uniform plate with crack-like local damages
is derived. Based on a theory of continuum damage mechanics, a local damage is represented in terms of
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Fig. 8. The effects of measurement noise in FRF on the damage identification results for the three damages problem.

the effective orthotropic elastic stiffnesses. A new damage identification theory is then formulated from the
forced vibration response of a damaged plate. The present damage identification theory has the capa-
bility of identifying the locations, severities, and orientations of local damages, all together at a time.
Numerical investigation is given to the effects of damage orientation on the vibration response of a simply
supported square plate. To validate the present damage identification theory, the numerically simulated
damage identification tests are conducted by taking into account the measurement noises in FRFs. The
numerical tests show that, up to about 7% random noises in FRF, the present damage identification theory

can fairly well identify the locations, severities, and orientations of all damages considered in the present
study.



2212 U. Lee et al. | International Journal of Solids and Structures 40 (2003) 2195-2213

Damage Magnitude D
Damage Magnitude D

(a) 0% Random Noise: DIE= 9.12x10"
Three Damages Problem D1 =0.30, D2 =0.70, D3 = 0.50
01 = 0.0°, B2 = 45.0°, 03 = 30.0°

Damage Magnitude D
Damage Magnitude D

(b) 5% Random Noise: DIE= 2.55X107 (c) 7% Random Noise: DIE= 3.32x10°
D1 =0.30, D2 = 0.69, D3 = 0.51 D1=0.32,D2=10.73, D3 =0.52
01=2.2° 02=47.5° 63=31.3° 61=3.8°, 82=47.3° 03=34.2°

Damage Magnitude D
Damage Magnitude D

(d) 10% Random Noise: DIE= 5.83x10” (e) 12% Random Noise: DIE= 6.6810”
D1 = 0.26, D2 = 0.65, D3 = 0.55 D1 =0.26, Dz = 0.59, D3 = 0.42
01=54° 02=48.7°, 03 = 34.6° 01 =9.1°, B2 =50.7°,083 = 35.3°

Fig. 9. The effects of the measurement noise in FRF on the damage identification results for the one damage problem.
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