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Abstract

The line crack-like damage generated within a small material volume may change the material behavior of the

material volume from initially isotropic to effectively orthotropic, depending on damage orientation. Thus, the change

in material behavior can be used to identify the orientation of line crack-like damage with respect to the reference

coordinates. Motivated from this observation, first the equation of motion is derived for the thin uniform plate with line

crack-like local damages. The locations and severities of damages are characterized by using a damage distribution

function, and a damaged small material volume is represented by the effective orthotropic elastic stiffnesses, which are

derived in terms of damage orientation and size. Next, a new damage identification theory is developed to identify the

orientations of local damages, in addition to their locations and severities, by using the frequency response functions

measured from the damaged plate. Finally, the effects of damage orientation on the vibration responses of a plate are

numerically investigated, and the numerically simulated damage identification tests are conducted to verify the present

damage identification theory.
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1. Introduction

Existence of structural damages within a structure leads to the changes in dynamic characteristics of the

structure such as the vibration responses, natural frequencies, mode shapes, and the modal dampings.

Therefore, the changes in dynamic characteristics of a structure can be used in turn to detect, locate and

quantify the structural damages generated within the structure. In the literature, a variety of structural

damage identification methods (SDIMs), including the finite element model (FEM) update techniques and

the experimental-data-based methods, have appeared over the years.

The FEM update techniques (e.g., Kabe, 1985; Zimmermann and Kaouk, 1994; Lim, 1995) have a

drawback because it requires reducing the degrees of freedom or extending the measured modal parameters,
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which may result in the loss of physical interpretability and the errors due to the stiffness diffusion that

smears the damage-induced localized changes in stiffness matrix into the entire stiffness matrix. Thus,

various experimental-data-based SDIMs have been proposed in the literature as the alternatives to the

FEM-update techniques. The existing experimental-data-based SDIM can be classified into several groups
depending on the type of experimental data used to detect, locate, and/or quantify structural damages.

They include the changes in modal data (e.g., Adams et al., 1978; Luo and Hanagud, 1997; Bicanic and

Chen, 1997; Hassiotis, 2000), frequency response functions (FRF) (e.g., Wang et al., 1997; Thyagarajan

et al., 1998; Lee and Shin, 2002a,b), strain energy (e.g., Cornwell et al., 1999), transfer function parameters

(e.g., Lew, 1995), flexibility matrix (e.g., Pandey and Biswas, 1995), residual forces (e.g., Ricles and Kos-

matka, 1992; Castello et al., 2002), mechanical impedances (e.g., Cawley, 1984), and so forth. It is inte-

resting to find that most of experimental-data-based SDIMs in the literature have been derived from FEM

model-based eigenvalue problems and that they have been applied mostly to one-dimensional structures
such as beams, frame structures, and truss structures.

Though there have been many studies on the vibration of cracked plates (e.g., Lynn and Kumbasar,

1967; Lee and Lim, 1993; Dimarogonas, 1996; Lee and Kim, 2001), there have been only a small number of

studies on the identification of damages within the plates. In the literature, Cawley and Adams (1979) are

the first who locates the defects within a rectangular plate by using natural frequency changes only. Araujo

dos Santos et al. (2000) used both natural frequencies and vibration modes to detect the damages within a

laminated rectangular plate, and Chen and Bicanic (2000) introduced a method in which the incomplete

natural frequencies and vibration modes can be used to detect the damages within a cantilever plate. The
damage detection methods by Cawley and Adams (1979), Araujo dos Santos et al. (2000), and Chen and

Bicanic (2000) are all derived from FEM model-based eigenvalue problems. Khadem and Rezaee (2000)

introduced an analytical approach in which the changes in natural frequencies are used for obtaining the

location and depth of a crack on the in-plane loaded plate. Later, Lee et al. (2001) developed an SDIM in

which the FRF measured from a damaged plate is used for identifying the locations and severities of many

local damages at a time.

The failure of most structural members involves general degradation of elastic properties due to the

localized nucleation and growth of damages (i.e., voids, cavities, or cracks of the size of crystal grains) and
their ultimate coalescences into the larger and larger size of material fracture. This implies that the ori-

entation of local damages may control the direction of crack propagation within a structure member.

Because the damage orientation will play a very important role to determine the failure pattern and re-

maining life of a structure member, it is mandatory to develop an SDIM that is capable of identifying the

orientations of local damages, together with their locations and severities. However, to the authors� best
knowledge, the main concerns of the previous experimental-data-based SDIMs existing in the literature are

mostly confined to locate and quantify local damages within a structure, without showing the capability to

identify the orientations of local damages. Motivated from this observation, this paper introduces a new
SDIM by which the orientations of local damages within a thin uniform plate, in addition to their locations

and severities, can be simultaneously identified.

The surfaces of material fracture can be considered as the continual propagation and coalescence of film-

like small local cracks. Thus, it may be pertinent to consider a local damage, which is film-like and uniform

through the plate thickness, as the equivalent line through-crack (simply, line crack). Based on the con-

tinuum damage mechanics, Lee et al. (1997) showed that a small material volume (SMV) with a line crack

behaves effectively orthotropic (i.e., orthotropic damage), while an SMV with a circular crack behaves

effectively isotropic (i.e., isotropic damage). They represented the material behavior of the SMV with a line
crack in terms of the effective orthotropic elastic stiffnesses, which are the functions of the isotropic elastic

stiffnesses, crack orientation, and the size of line crack (Lee et al., 1997). Thus, the changes in local elastic

stiffnesses from initially isotropic to effectively orthotropic can be considered as the indicator of current

crack orientation: this observation brings a new SDIM developed in the present study.
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Thus, the purposes of the present study are: (1) to derive the equation of motion for the thin uniform

rectangular plate with line crack-like damages by using a continuum damage representation, and (2)

to develop a new SDIM by which the orientations of local damages, in addition to their locations and

severities, can be identified at a time.

2. Effective orthotropic damage representation

Consider an elastic thin rectangular plate with the thickness h and the widths Lx and Ly in the x- and y-
directions, respectively. The intact plate material is isotropic and has Young�s modulus E and Poisson�s
ratio m. Assume there is a line crack of length 2l, centered at (xD; yD) and aligned with the crack coordinate

�1� which is oriented h� with respect to the global coordinate x, as shown in Fig. 1(a). In the following, the
crack coordinates will be represented by the subscripts 1 and 2, if not mentioned otherwise.

Lee et al. (1997) showed that the effective elastic stiffnesses QD
ij for the SMV containing a line crack-like

damage could be derived as follows:

QD
ij ¼ Qijð1� eijDÞ ði; j ¼ 1; 2; 6; no sumÞ ð1Þ

where Qij are the reduced stiffnesses for the intact isotropic material under the plane stress state (Whitney,

1996) and eij are the effective material directivity parameters given by

e11 ¼
2m2

1� m2
; e22 ¼ e12 ¼ e21 ¼

2

1� m2

e16 ¼ e26 ¼ e61 ¼ e62 ¼ 0; e66 ¼
2

1þ m

ð2Þ

For the case of isotropic damage such as the circular through-crack (i.e., circular hole), the values of eij are

given by

e11 ¼ e22 ¼ e12 ¼ e21 ¼ e66 ¼ 1; e16 ¼ e26 ¼ e61 ¼ e62 ¼ 0 ð3Þ
In Eq. (1), D is the damage variable defined by the ratio of the volume of the SMV (i.e., 4xyh) containing a

single line crack inside and the effective damaged volume (i.e., phl2) determined by the size of crack (Lee

et al., 1997). Thus, D represents the averaged severity of damage within an SMV, which is called herein the

effective damage magnitude. The effective damage magnitude 06D6 1 may have two extreme values as

D ¼ phl2

4xyh
¼ 0 for intact state

1 for complete material failure

�
ð4Þ

Fig. 1. (a) Initially isotropic rectangular plate with a line through-crack and (b) its equivalent continuum damage representation in

terms of effective orthotropic elastic stiffnesses.
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Note that the effective orthotropic elastic stiffnesses QD
ij given by Eq. (1) are all measured with respect to

the crack coordinates 1 and 2. Thus, the effective elastic stiffness with respect to the global coordinates x and
y can be obtained by using the coordinates transformation as follows:

Q ¼ TðhÞTQDTðhÞ ð5Þ
where TðhÞ is the coordinates transformation matrix (Whitney, 1996), in which h denotes the crack orien-
tation (degrees) with respect to the global coordinate x. The superscript �T� denotes the transpose of matrix.

In the following, the SMV containing a line crack-like damage (simply, damage) will be represented in

terms of the effective elastic stiffnesses of Eq. (5) (Qij) that are determined from the reduced stiffness of

intact isotropic solid (Qij), the effective material directivity parameters (eij), the damage orientation (h), and
the damage variable (D).

3. Dynamics of a plate with orthotropic damages

3.1. Equation of motion

For small amplitude vibration, the equation of motion for a thin uniform plate is given by (Whitney,

1996)

o2Mx

ox2
þ 2

o2Mxy

oxoy
þ o2My

oy2
þ f ðx; y; tÞ ¼ qA€ww ð6Þ

where wðx; y; tÞ is the flexural deflection, f ðx; y; tÞ the external force applied normal to the surface of plate,

qA is the mass density per area, and dot (�) denotes the partial derivative with respect to time t. The moment

resultants Mx, My , and Mxy are defined by

Mx

My

Mxy

8<
:

9=
; ¼

D11 D12 D16

D22 D26

symm D66

2
4

3
5 jxx

jyy

jxy

8<
:

9=
; ð7Þ

where jij are the curvatures and Dij are the bending stiffnesses related to the transformed plane-stress re-

duced stiffnesses Qij as follows (Whitney, 1996):

Dij ¼
h3

12
Qij ði; j ¼ 1; 2; 6Þ ð8Þ

Because the plate shown in Fig. 1(b) consists of the intact zone (outside SMV, isotropic) and the

damaged zone (inside SMV, effectively orthotropic), Dij have the values as follows:

Dij ¼
Dij ¼ DijðD ¼ 0Þ ðoutside SMVÞ
DD

ij ¼ DijðDÞ ðinside SMVÞ

�
ði; j ¼ 1; 2; 6Þ ð9Þ

The intact plate bending stiffnesses Dij for the outside of SMV are given by

D11 ¼ D22 ¼ D; D12 ¼ D21 ¼ mD

D16 ¼ D61 ¼ D26 ¼ D62 ¼ 0; D66 ¼
1� m
2

� 

D

ð10Þ

where D is the flexural rigidity of plate defined by

D ¼ Eh3

12ð1� m2Þ ð11Þ
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Based on Eq. (9), the bending stiffnesses all over the plate can be represented by

Dijðx; yÞ ¼ Dij � DDijdðx; yÞ ði; j ¼ 1; 2; 6Þ ð12Þ
where

DDij ¼ Dij � DD
ij ði; j ¼ 1; 2; 6Þ ð13Þ

and

dðx; yÞ ¼ ½HðxD � �xxÞ � HðxD þ �xxÞ� 	 ½HðyD � �yyÞ � HðyD þ �yyÞ� ð14Þ
The perturbed plate bending stiffnesses DDij represent the effective degradation of the plate bending stiff-
nesses due to the existence of damage. The damage distribution function dðx; yÞ plays the roll of locating

and quantifying the severity of damage on the plate. In Eq. (14), HðxÞ and HðyÞ are the Heaviside�s unit
functions defined by

HðaÞ ¼ 1 when x > a ðor y > aÞ
0 when x < a ðor y > aÞ

�
ð15Þ

Substituting Eq. (12) into Eq. (7) and the result into Eq. (6) yields the equation of motion for the plate

with a line crack as follows:

Dr4w � o2/1

ox2

�
þ o2/2

oy2
þ o2/3

oxoy



þ qA€ww ¼ f ðx; y; tÞ ð16Þ

where

/1 ¼ dðx; yÞ DD11

o2w
ox2

�
þ DD12

o2w
oy2

þ 2DD16

o2w
oxoy

�

/2 ¼ dðx; yÞ DD12

o2w
ox2

�
þ DD22

o2w
oy2

þ 2DD26

o2w
oxoy

�

/3 ¼ dðx; yÞ 2DD16

o2w
ox2

�
þ 2DD26

o2w
oy2

þ 4DD66

o2w
oxoy

�
ð17Þ

where r4 denotes the biharmonic operator. For the intact plate, the second term in the left-hand side of

Eq. (16) completely vanishes. Though Eq. (16) is derived for a single damage, it can be readily generalized
for many line cracks by modifying Eq. (14) to encompass all local damages.

3.2. Dynamic responses

The forced vibration response of a thin uniform plate with a single damage can be assumed as

wðx; y; tÞ ¼
XM

m¼1

Wmðx; yÞqmðtÞ ð18Þ

where qmðtÞ are the modal coordinates, and Wmðx; yÞ are the natural modes of intact plate satisfying the

eigenvalue problem

Dr4Wm ¼ qAX2
mWm ðno sum on mÞ ð19Þ

and the orthogonality propertyZ Z
qAWmWn dxdy ¼ dmn
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Z Z
DWmr4Wn dxdy ¼ X2

mdmn ðno sum on mÞ ð20Þ

where Xm are the natural frequencies of the intact plate, and dmn denotes the Kronecker delta. The natural

modes Wmðx; yÞ used in Eq. (18) can be analytically obtained in the closed forms for Levy-type plates

(Reddy, 1999). However, for the non-Levy-type plates, the numerical approach such as the finite element

method can be applied to obtain the natural modes.

Substituting Eq. (18) into Eq. (16) and then applying Eq. (20) yields the modal equations as follows:

€qqþ diag½X2�q� kq ¼ f ðtÞ ð21Þ
where

q ¼ q1 q2 . . . qMf gT; diag½X2� ¼
. .
.

X2
m

. .
.

2
664

3
775 ð22Þ

and f is the nodal forces vector computed from

fmðtÞ ¼
Z Ly

0

Z Lx

0

f ðx; y; tÞWmðx; yÞdxdy ð23Þ

and the matrix k is computed from

kmn ¼
Z yDþ�yy

yD��yy

Z xDþ�xx

xD��xx
Umnðx; yÞDdðx; yÞdxdy ð24Þ

where Umn is the (one by six) matrix defined by

Umnðx; yÞ ¼
o2Wm

ox2
o2Wn

ox2
;
o2Wm

ox2
o2Wn

oy2

�
þ o2Wn

ox2
o2Wm

oy2
; 2

o2Wm

ox2
o2Wn

oxoy

�
þ o2Wn

ox2
o2Wm

oxoy



;

o2Wm

oy2
o2Wn

oy2
; 2

o2Wm

oy2
o2Wn

oxoy

�
þ o2Wn

oy2
o2Wm

oxoy



; 4

o2Wm

oxoy
o2Wn

oxoy

�
ð25Þ

and D is the (six by one) vector defined by

D ¼ DD11;DD12;DD16;DD22;DD26;DD66f gT ð26Þ
The symmetric matrix k reflects the influence of damage and it is called �damage influence matrix� (Lee and
Shin, 2002a). The off-diagonal terms of k induce the coupling between modal coordinates.

By using Eqs. (5), (8)–(10), Eq. (13) can be expressed as

DDij ¼ ZijðhÞD ði; j ¼ 1; 2; 6Þ ð27Þ
where Zij are computed from

ZðhÞ ¼ h3

12
TðhÞTETðhÞ ð28Þ

where T is the coordinates transformation matrix defined in Eq. (5), and E is the matrix computed from

Eij ¼ Qijeij ði; j ¼ 1; 2; 6; no sumÞ ð29Þ
The values of eij are given by Eq. (2) for orthotropic damages and by Eq. (3) for isotropic damages.

Substituting Eq. (27) into Eq. (26) gives

D ¼ DðP þHc þH sÞD ð30Þ
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where P, Hc, and H s are the vectors defined, for orthotropic damage, by

P ¼ 1þ m2

1� m2
2m

1� m2
0

1þ m2

1� m2
0

1� m
2ð1þ mÞ

� �T

Hc ¼ f� cos 2h 0 0 cos 2h 0 0 gT

H s ¼ f 0 0 � sin 2h 0 � sin 2h 0 gT

ð31Þ

and, for isotropic damage, by

P ¼ f 1 m 0 1 0 ð1� mÞ=2 gT

Hc ¼ H s ¼ 0
ð32Þ

Substituting Eqs. (14), (25) and (30) into Eq. (24) gives

k ¼ ða þ b cos 2h þ c sin 2hÞD ð33Þ
where a, b, and c are computed, for orthotropic damage, from

amn ¼ D
Z yDþ�yy

yD��yy

Z xDþ�xx

xD��xx

1þ m2

1� m2

� 

o2Wm

ox2
o2Wn

ox2

�
þ 2m

1� m2

� 

o2Wm

ox2
o2Wn

oy2

�
þ o2Wn

ox2
o2Wm

oy2




þ 1þ m2

1� m2

� 

o2Wm

oy2
o2Wn

oy2
þ 1� m

2ð1þ mÞ

� 

o2Wm

oxoy
o2Wn

oxoy

�
dxdy

bmn ¼ D
Z yDþ�yy

yD��yy

Z xDþ�xx

xD��xx

�
� o2Wm

ox2
o2Wn

ox2
þ o2Wm

oy2
o2Wn

oy2



dxdy

cmn ¼ �D
Z yDþ�yy

yD��yy

Z xDþ�xx

xD��xx

o2Wm

ox2
o2Wn

oxoy

�
þ o2Wn

ox2
o2Wm

oxoy
þ o2Wm

oy2
o2Wn

oxoy
þ o2Wn

oy2
o2Wm

oxoy



dxdy

ð34Þ

For the isotropic damage, Eq. (33) becomes identical to that derived in the previous study by Lee et al.

(2001): b ¼ c ¼ 0 and a is computed from

amn ¼ D
Z yDþ�yy

yD��yy

Z xDþ�xx

xD��xx

o2Wm

ox2
o2Wn

ox2

�
þ m

o2Wm

ox2
o2Wn

oy2

�
þ o2Wn

ox2
o2Wm

oy2



þ o2Wm

oy2
o2Wn

oy2

þ 1� m
2

� 

o2Wm

oxoy
o2Wn

oxoy

�
dxdy ð35Þ

Eq. (33) shows that the damage influence matrix k depends on (a) the natural modes of intact plate Wm, (b)

the damage orientation h and (c) the effective damage magnitude D indicating the averaged severity of

damage within an SMV.

Eq. (32) or (33) is derived for the plate with a single damage. For the plate with many local damages (say

N local damages), it can be readily generalized as follows:

k ¼
XN

j¼1

ðaj þ bj cos 2hj þ cj sin 2hjÞDj ð36Þ

where Dj is the effective damage magnitude within the SMV containing the jth damage of orientation hj.

The SMV containing the jth damage is centered at (xDj; yDj) and has the dimensions of 2�xxj and 2�yyj in the x-
and y-directions, respectively. The matrices aj, bj, and cj are for the jth damage, all computed from Eq. (34)

or (35) by taking the integrals only over the domain from ðxDj � �xxjÞ to ðxDj þ �xxjÞ and from ðyDj � �yyjÞ to
ðyDj þ �yyjÞ.
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Assume a harmonic point force of magnitude Fo is applied at a point xF ¼ ðxF ; yF Þ. Solving Eq. (21) for

qmðtÞ and then substituting the solutions into Eq. (18) gives the forced vibration response measured at

xM ¼ (x; y) as follows:

wðxM ; tÞ ffi
XM

m¼1

WmðxMÞWmðxF Þ
X2

m � x2

"
þ
XM

m¼1

XM

n¼1

kmn
WmðxMÞ
X2

m � x2

WnðxF Þ
X2

n � x2

#
Foe

ixt ð37Þ

4. Damage identification theory

4.1. Formulation

It is relatively easy and cheap to use accelerometers to measure the vibration responses of a structure. The

vibration signals measured by accelerometers can be processed to compute the FRF. Among several defi-

nitions of FRF (Ewins, 1984), the inertance (or accelerance) FRF will be adopted in the present study to

develop a new damage identification method. The inertance FRF is defined as the ratio of the acceleration
to the applied force.

The inertance FRF measured from a damaged plate can be obtained from Eq. (37) as

ADðxM ;xÞ ¼ AðxM ;xÞ þ DAðxM ;xÞ ð38Þ

where A is the inertance FRF measured from the intact plate:

AðxM ;xÞ ¼ �x2WT
M diag½X2 � x2�WF ð39Þ

and DA is the perturbed inertance FRF due to the existence of damage

DAðxM ;xÞ ¼ �x2WT
MkWF ð40Þ

where

WM ¼

..

.

WmðxMÞ
X2

m � x2

..

.

8>>>><
>>>>:

9>>>>=
>>>>;
; WF ¼

..

.

WmðxF Þ
X2

m � x2

..

.

8>>>><
>>>>:

9>>>>=
>>>>;
; diag½X2 � x2� ¼

. .
.

X2
m � x2

. .
.

2
664

3
775 ð41Þ

From Eq. (38), one may see that the effects of damage appear only in the perturbed inertance FRF ðDAÞ
through the damage influence matrix k given by Eq. (36).

Substituting Eq. (36) into Eq. (40) gives

XN

j¼1

ajðxM ;xÞ
�

þ bjðxM ;xÞ cos 2hj þ cjðxM ;xÞ sin 2hj

�
Dj ¼ DAðxM ;xÞ ð42Þ

where

ajðxM ;xÞ ¼ �x2WT
MðxM ;xÞajWF ðxÞ

bjðxM ;xÞ ¼ �x2WT
MðxM ;xÞbjWF ðxÞ

cjðxM ;xÞ ¼ �x2WT
MðxM ;xÞcjWF ðxÞ

ð43Þ
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Eq. (42) shows the relationship between the damage information (i.e., effective damage magnitudes Dj and

damage orientations hj) and the damage-induced change in dynamic response (i.e., the perturbed inertance

FRF DA). Thus, once DA is experimentally measured from the damaged plate, Eq. (42) can be used to

identify the unknown damage information.
For a chosen set of (xM ;x), Eq. (42) provides an algebraic equation for unknown effective damage

magnitudes Dj and damage orientations hj. Thus, by properly choosing as many different sets of (xM ;x) as

required, say N for instance, and denoting the ith set of (xM ;x), by the subscript i, a set of simultaneous

algebraic equations can be obtained in the form as

XðHÞD ¼ DA ð44Þ

where

D ¼ fD1 D2 � � � DN gT

H ¼ f h1 h2 � � � hN gT

DA ¼ fDA1 DA2 � � � DAN gT
ð45Þ

and

XðHÞ ¼ Aþ Bdiag½cos 2h� þ C diag½sin 2h�

A ¼ ½aij� ¼ ajðxM ;xÞi
B ¼ ½bij� ¼ bjðxM ;xÞi
C ¼ ½cij� ¼ cjðxM ;xÞi

ði; j ¼ 1; 2; . . . ;NÞ

diag½cos 2h� ¼

. .
.

cos 2hj

. .
.

2
6664

3
7775

diag½sin 2h� ¼

. .
.

sin 2hj

. .
.

2
6664

3
7775

ð46Þ

Eqs. (44) represent the damage identification theory developed in this paper for locating many local line
crack-like damages and also for identifying their severities (i.e., effective damage magnitudes) and orien-

tations with respect to the reference coordinates.

For the problems with isotropic damages, the matrices B and C should vanish and Eqs. (44) are reduced

to the theory developed in the previous study (Lee et al., 2001), that is

AD ¼ DA ð47Þ

For isotropic damage, the matrix A is computed from Eq. (43a) by using the matrix a defined by Eq. (35).

By properly choosing N different sets of (xM ;x), the number of simultaneous algebraic equations can be

made equal to that of SMVs (or the number of unknown Dj). Then, one can apply the direct matrix in-
version method to solve Eqs. (47) for D.
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4.2. Computation: iterative method

Eq. (44) is nonlinear with respect to the damage orientation H, which are coupled with effective

damage magnitude D. Thus, the iterative solution technique is inevitable for identifying orthotropic
damages.

Once DA is given (i.e., measured), the relationship between the perturbations (or errors) in D and H can

be derived from Eq. (44) as follows:

DD ¼ ½2X�1ðHÞYðHÞdiag½Dj��DH � SDH ð48Þ
or

DH ¼ S�1DD ð49Þ
where

Y ðHÞ ¼ Bdiag½sin 2h� � C diag½cos 2h�
DH ¼ fDh1 Dh2 � � � DhNgT

ð50Þ

The matrix S in Eq. (48) indicates the sensitivity of D to the perturbation in H, while the matrix S�1

in Eq. (49) indicates the sensitivity of H to the perturbation in D. For numerical illustration, the matrices

S and S�1 are given in Fig. 2 for the plate with a local damage shown in Fig. 6(a). It is very clear from Fig. 2

that D is not so sensitive to the perturbation in H, while H is extremely sensitive to the perturbation in

D. Thus, when applying an iterative solution method to Eqs. (44), it is not desirable to update H by

directly using the perturbation in D. From this observation, an iterative method shown in Fig. 3 is used

in this study. The procedure of the present iterative solution method is further detailed in the following:

(1) First guess the initial value Hð1Þ and then compute the corresponding initial value Dð1Þ from Eqs. (44)
by the direct use of matrix inversion.

(2) Substitute the initial value Dð1Þ into Eqs. (44) and compute the updated value of H by applying the

Newton–Raphson method to solve the nonlinear algebraic equations in H.

(3) Compute the increment DH by subtracting the previous value of H from the updated value of H and

then use the results to compute the increment DD from Eq. (48).

(4) Compute the updated value of D by adding DD to its previous value.

(5) Go back to (2), and use the updated value of D as the new initial value to start the next iteration.

Fig. 2. (a) The matrix S in Eq. (48) and (b) its inverse matrix S�1 in Eq. (49).
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(6) Repeat the iteration process (from (2) to (5)) until D and H are converged to certain values, within a

pre-specified accuracy limit.

5. Numerical illustrations and discussions

First, the effects of damage orientation on the vibration responses of a plate with a line crack are in-

vestigated. Fig. 4 shows the example plate, which is simply supported. The geometric and material pro-

perties are: thickness h ¼ 0:004 m, sizes Lx ¼ Ly ¼ L ¼ 0:5 m, Young�s modulus E ¼ 72 GPa, Poisson�s ratio
m ¼ 0:33, and mass density 2800 kg/m3. The line crack is 0.032 m long and is located at the center of plate. A
point harmonic force (excitation frequency x ¼ 100 Hz) is applied at the middle of the plate. To compute

Fig. 3. Iterative solution method used in the present study.
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the effective elastic stiffnesses QD
ij for damage zone (i.e., SMV), the dimensions of the SMV are chosen as

2�xx ¼ 2�yy ¼ 0:04 m so that the effective damage magnitude becomes D ¼ 0:5.
Comparing with the natural frequencies of the intact plate and the plate with isotropic damage, Table 1

shows the change in the natural frequencies of the plate with orthotropic damage with varying the orien-

tation of damage. One may see from Table 1 that, in general, the natural frequencies are reduced in

Fig. 4. Non-dimensional vibration amplitudes of a square plate measured at different distances from the line crack (r) with varying the

crack orientation ðhÞ and the angle of measurement point direction (/).
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magnitude due to the presence of damage and they are dependent of damage direction. The geometric
symmetry of the example square plate will be destroyed by the orthotropic damage, while not by the

isotropic damage. Thus, as expected, Table 1 shows that the natural frequency for mode (1,2) is different

from that for mode (2,1) for the case of orthotropic damage, while they are the same for the case of

isotropic damage. Fig. 4 shows the vibration amplitudes of a square plate measured at different distances

from the crack (r) with varying the crack orientation (h) and the measurement point direction (/). One

may observe that, as the distance of the measurement point from the crack gets larger and larger, the

effects of the measurement point direction disappear and only the effects of crack orientation become

dominant.
Next, the numerically simulated damage identification tests are conducted to validate the present SDIM.

Two example problems shown in Fig. 5 are considered: (a) the plate with a line crack-like damage (single

damage problem), and (b) the plate with three line crack-like damages (three damages problem). The two

plates have the simply supported boundary conditions, and they have the same dimensions and material

properties: thickness h ¼ 4 mm, Lx ¼ Ly ¼ 0:5 m, Young�s modulus E ¼ 72 GPa, Poisson�s ratio m ¼ 0:33,
and mass density 2800 kg/m3. The details of the line crack-like damages considered for two example

problems are given in Table 2. As shown in Fig. 5, the plates are divided into 100 equal-sized finite seg-

ments, and the damage identification analysis are conducted to determine the effective damage magnitudes
and orientations within all finite segments. A point harmonic force (excitation frequency x ¼ 100 Hz) is

applied at the middle points of plates, and the inertance FRF is simulated from Eq. (38) at each center of

finite segments.

To measure the accuracy of the identified effective damage magnitudes with respect to true ones (i.e., pre-

specified values), a root mean squared �damage identification error (DIE)� defined by

Table 1

Damage information pre-specified for damage identification tests

Example problems Effective damage

magnitude

Damage orientation

(degrees)

Damage location

(xDm; yDm)

Dimensions of finite

segment (2�xxm; 2�yym)

One damage D ¼ 0:5 h ¼ 45 (0.225, 0.225) (0.05, 0.05)

Three damages D1 ¼ 0:3 h1 ¼ 0 (0.125, 0.375) (0.05, 0.05)

D2 ¼ 0:7 h2 ¼ 45 (0.275, 0.075) (0.05, 0.05)

D3 ¼ 0:5 h3 ¼ 30 (0.275, 0.275) (0.05, 0.05)

Fig. 5. Two example problems considered for numerically simulated damage identification tests.
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DIE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LxLy

XNseg

j¼1

4�xxj�yyjðDT
j � DI

jÞ
2

vuut ð51Þ

is used herein. The superscripts T and I indicate the �true� and �identified� values, respectively. Nseg is

the number of finite segments, and the subscript j indicates the quantities for the jth finite segment.

As the value of DIE gets smaller, the identified effective damage magnitudes get closer to the true

values.

Figs. 6 and 7 show the damage identification results for the single damage problem and three damages
problem, respectively, all obtained without taking into account the measurement noise in FRF. One may

see from Figs. 6 and 7 that, as the iteration is repeated, the damage identification results obtained by the

present SDIM indeed converge to the true values. To obtain very accurate damage identification results,

within 0.5% errors for both the effective damage magnitudes and damage orientation, Figs. 6 and 7 show

that total 20 iterations and total 40 iterations are required for the present single damage problem and three

damages problem, respectively.

In practice, the experimentally measured inertance FRF is liable to be contaminated by the measurement

noise. The measurement noise may be lowered below about 5–7% by most well prepared vibration tests
(Lee and Shin, 2002b). To investigate the effects of measurement noise in FRF on the reliability of the

present SDIM, e% random noise is added to the simulated inertance FRF by following the approach by

Thyagarajan et al. (1998):

A ¼ A 1
�

þ e
100

	 randn
�

ð52Þ

where A is the inertance FRF contaminated by e% random noise, and randn is the random noise generator

function in MATLAB�.

The effects of the noise in FRF on the damage identification results are shown in Fig. 8 for the single

damage problem and in Fig. 9 for the three damages problem. The results shown in Figs. 8 and 9 are

obtained from the mean values of ten simulations. For each simulation, total 20 iterations are conducted
for the single damage problem, and total 40 iterations for the three damages problem. As expected, as the

level of random noise in FRF is increased, the larger level of incorrect effective damage magnitude appears

at damage-free finite segments, increasing the value of DIE. Figs. 8 and 9 show that the present SDIM

identifies the location and effective damage magnitude of the damaged finite segments quite accurately,

within about 5% errors, as far as the noise in FRF is kept below about 10% for one damage problem and

about 7% for three damages problem. In addition, Figs. 8 and 9 show that the present SDIM can fairly well

identify the damage orientation at damaged finite segments, which is the unique and important feature of

the present theory. From Figs. 8 and 9, one may observe that, when compared with the location and se-
verity of damage, the damage orientation is more sensitive to the random noise in FRF. To predict the

Table 2

The change in natural frequencies (Hz) of the plate shown in Fig. 4

Modes Intact Isotropic

damage

Orthotropic damage

h ¼ 0� h ¼ 15� h ¼ 30� h ¼ 45�

1st (1,1) 77.95 76.30 75.03 74.86 74.46 74.23

2nd (1,2) 194.87 194.23 192.91 192.75 192.40 192.20

3rd (2,1) 194.87 194.23 194.50 194.52 194.56 194.58

5th (1,3) 389.74 377.32 364.94 365.46 366.49 367.01

10th (1,4) 662.56 654.56 660.11 658.97 656.01 653.90

20th (4,4) 1247.16 1241.80 1239.18 1232.93 1219.88 1212.97

30th (3,6) 1753.82 1734.85 1742.71 1742.61 1742.40 1742.31
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damage orientation within about 5% errors, Figs. 8 and 9 show that the noise in FRF should be below

about 7% for one damage problem and about 5% for three damages problem. Thus, in general, identifying

Fig. 6. Damage identification results for the one damage problem, without considering the effects of measurement noise in FRF.
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damage orientation seems to require more carefully prepared FRF-measurement tests in order to lower the

level of measurement noise below than that required for identifying damage location and magnitudes only.

6. Conclusions

In the present paper, first, the equation of motion of the thin uniform plate with crack-like local damages
is derived. Based on a theory of continuum damage mechanics, a local damage is represented in terms of

Fig. 7. Damage identification results for the three damages problem, without considering the effects of measurement noise in FRF.
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the effective orthotropic elastic stiffnesses. A new damage identification theory is then formulated from the

forced vibration response of a damaged plate. The present damage identification theory has the capa-

bility of identifying the locations, severities, and orientations of local damages, all together at a time.

Numerical investigation is given to the effects of damage orientation on the vibration response of a simply
supported square plate. To validate the present damage identification theory, the numerically simulated

damage identification tests are conducted by taking into account the measurement noises in FRFs. The

numerical tests show that, up to about 7% random noises in FRF, the present damage identification theory

can fairly well identify the locations, severities, and orientations of all damages considered in the present

study.

Fig. 8. The effects of measurement noise in FRF on the damage identification results for the three damages problem.

U. Lee et al. / International Journal of Solids and Structures 40 (2003) 2195–2213 2211



Acknowledgement

This work was supported by Grant No. R01-2000-00295-0 from the Korea Science and Engineering

Foundation.

References

Adams, R.D., Cawley, P., Pye, C.J., Stone, B.J., 1978. A vibration technique for non-destructively assessing the integrity of structures.

Journal of Mechanical Engineering Science 20 (2), 93–100.

Araujo dos Santos, J.V., Mota Soares, C.M., Mota Soares, C.A., Pina, H.L.G., 2000. A damage identification: numerical model based

on the sensitivity of orthogonality conditions and least squares techniques. Computers and Structures 78, 283–291.

Fig. 9. The effects of the measurement noise in FRF on the damage identification results for the one damage problem.

2212 U. Lee et al. / International Journal of Solids and Structures 40 (2003) 2195–2213



Bicanic, N., Chen, H.P., 1997. Damage identification in framed structures using natural frequencies. International Journal of

Numerical Methods in Engineering 40, 4451–4468.

Castello, D.A., Stutz, L.T., Rochinha, F.A., 2002. A structural defect identification approach based on a continuum damage model.

Computers and Structures 80, 417–436.

Cawley, P., 1984. The impedance method of non-destructive inspection. Journal of NDT International 17, 59–65.

Cawley, P., Adams, R.D., 1979. The location of defects in structures from measurements of natural frequencies. Journal of Strain

Analysis 14 (2), 49–57.

Chen, H.P., Bicanic, N., 2000. Assessment of damage in continuum structures based on incomplete modal information. Computers and

Structures 74, 559–570.

Cornwell, P., Doebling, S.W., Farrar, C.R., 1999. Application of the strain energy damage detection method to plate-like structures.

Journal of Sound and Vibration 224 (2), 359–374.

Dimarogonas, A.D., 1996. Vibration of cracked structures: a state of the art review. Engineering Fracture Mechanics 55 (5), 831–857.

Ewins, D.J., 1984. Modal Testing: Theory and Practice. Research Studies Press, New York.

Hassiotis, S., 2000. Identification of damage using natural frequencies and Markov parameters. Computers and Structures 74, 365–

373.

Kabe, A.M., 1985. Stiffness matrix adjustment using mode data. AIAA Journal 28 (9), 1431–1436.

Khadem, S.E., Rezaee, M., 2000. An analytical approach for obtaining the location and depth of an all-over part-through crack on

externally in-plane loaded rectangular plate using vibration analysis. Journal of Sound and Vibration 230 (2), 291–308.

Lee, H.P., Lim, S.P., 1993. Vibration of cracked rectangular plates including transverse shear deformation and rotary inertia.

Computers and Structures 49, 715–718.

Lee, U., Kim, N., 2001. Dynamics of damaged plates. In: 42nd AIAA Structures, Structural Dynamics and Materials Conference,

AIAA-2001-1391.

Lee, U., Kim, N., Shin, J., 2001. Identification of damages within a plate structure. In: 42nd AIAA Structures, Structural Dynamics

and Materials Conference, AIAA-2001-1244.

Lee, U., Lesieutre, G.A., Fang, L., 1997. Anisotropic damage mechanics based on strain energy equivalence and equivalent elliptical

microcracks. International Journal of Solids and Structures 34 (33/34), 4377–4397.

Lee, U., Shin, J., 2002a. An frequency response function-based structural damage identification method. Computers and Structures

80 (2), 117–132.

Lee, U., Shin, J., 2002b. A frequency-domain method of structural damage identification formulated from the dynamic stiffness

equation of motion. Journal of Sound and Vibration 257 (4), 615–634.

Lew, J.S., 1995. Using transfer function parameter changes for damage detection of structures. AIAA Journal 33 (11), 2189–2193.

Lim, T.W., 1995. Structural damage detection using constrained eigenstructure assignment. AIAA Journal of Guidance Control and

Dynamics 18 (3), 411–418.

Luo, H., Hanagud, S., 1997. An integral equation for changes in the structural dynamics characteristics of damaged structures.

International Journal of Solids and Structures 34 (35/36), 4557–4579.

Lynn, P.P., Kumbasar, N., 1967. Free vibrations of thin rectangular plates having narrow cracks with simply supported edges.

Development in Mechanics 4, 911–928.

Pandey, A.K., Biswas, M., 1995. Damage diagnosis of truss structures by estimation of flexibility change. International Journal of

Analytical and Experimental Modal Analysis 10 (2), 104–117.

Reddy, J.N., 1999. Theory and Analysis of Elastic Plates. Taylors & Francis, Philadelphia.

Ricles, J.M., Kosmatka, J.B., 1992. Damage detection in elastic structures using vibratory residual forces and weighted sensitivity.

AIAA Journal 30 (9), 2310–2316.

Thyagarajan, S.K., Schulz, M.J., Pai, P.F., 1998. Detecting structural damage using frequency response functions. Journal of Sound

and Vibration 210 (1), 162–170.

Wang, Z., Lin, R.M., Lim, M.K., 1997. Structural damage detection using measured FRF data. Computer Methods in Applied

Mechanics in Engineering 147, 187–197.

Whitney, J.M., 1996. Structural Analysis of Laminated Anisotropic Plates. Technomic Publishing, Lancaster.

Zimmermann, D.C., Kaouk, M., 1994. Structural damage detection using a minimum rank update theory. ASME Journal of Vibration

and Acoustics 116, 222–231.

U. Lee et al. / International Journal of Solids and Structures 40 (2003) 2195–2213 2213


	Identification of orthotropic damages within a thin uniform plate
	Introduction
	Effective orthotropic damage representation
	Dynamics of a plate with orthotropic damages
	Equation of motion
	Dynamic responses

	Damage identification theory
	Formulation
	Computation: iterative method

	Numerical illustrations and discussions
	Conclusions
	Acknowledgements
	References


